Halogen Bonding: A Powerful Tool for Modulation of Peptide Conformation

نویسندگان

  • Emma Danelius
  • Hanna Andersson
  • Patrik Jarvoll
  • Kajsa Lood
  • Jürgen Gräfenstein
  • Máté Erdélyi
چکیده

Halogen bonding is a weak chemical force that has so far mostly found applications in crystal engineering. Despite its potential for use in drug discovery, as a new molecular tool in the direction of molecular recognition events, it has rarely been assessed in biopolymers. Motivated by this fact, we have developed a peptide model system that permits the quantitative evaluation of weak forces in a biologically relevant proteinlike environment and have applied it for the assessment of a halogen bond formed between two amino acid side chains. The influence of a single weak force is measured by detection of the extent to which it modulates the conformation of a cooperatively folding system. We have optimized the amino acid sequence of the model peptide on analogues with a hydrogen bond-forming site as a model for the intramolecular halogen bond to be studied, demonstrating the ability of the technique to provide information about any type of weak secondary interaction. A combined solution nuclear magnetic resonance spectroscopic and computational investigation demonstrates that an interstrand halogen bond is capable of conformational stabilization of a β-hairpin foldamer comparable to an analogous hydrogen bond. This is the first report of incorporation of a conformation-stabilizing halogen bond into a peptide/protein system, and the first quantification of a chlorine-centered halogen bond in a biologically relevant system in solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of the Selectivity in Anions Recognition Processes by Combining Hydrogen- and Halogen-Bonding Interactions.

Most of the halogen bonding receptors for anions described use halogen bonding binding sites solely in the anion recognition process; only a few examples report the study of anion receptors in which the halogen bonding interaction has been used in combination with any other non-covalent interaction. With the aims to extend the knowledge in the behaviour of this kind of mixed receptors, we repor...

متن کامل

Interplay Between Lithium Bonding and Halogen Bonding in F3CX•••YLi•••NCCN and F3CX•••NCCN•••LiY Complexes (X = Cl, Br; Y = CN, NC)

MP2 calculations with cc-pVTZ basis set were used to analyze intermolecular interactions in F3CX···YLi···NCCN and F3CX···NCCN···LiY triads (X = Cl, Br; Y = CN, NC) which are connected via halogen and lithium bonds. Those complexes with the role of LiY as halogen acceptor and lithium donor show cooperativity with energy values ranging between -1.97 and -2.92 kJ mol...

متن کامل

Active‐Metal Template Synthesis of a Halogen‐Bonding Rotaxane for Anion Recognition

The synthesis of an all-halogen-bonding rotaxane for anion recognition is achieved by using active-metal templation. A flexible bis-iodotriazole-containing macrocycle is exploited for the metal-directed rotaxane synthesis. Endotopic binding of a Cu(I) template facilitates an active-metal CuAAC iodotriazole axle formation reaction that captures the interlocked rotaxane product. Following copper-...

متن کامل

Halogen bonds as orthogonal molecular interactions to hydrogen bonds.

Halogen bonds (X-bonds) are shown to be geometrically perpendicular to and energetically independent of hydrogen bonds (H-bonds) that share a common carbonyl oxygen acceptor. This orthogonal relationship is accommodated by the in-plane and out-of-plane electronegative potentials of the oxygen, which are differentially populated by H- and X-bonds. Furthermore, the local conformation of a peptide...

متن کامل

The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances

Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Sec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2017